XXXTest report

Sample number: 202508020...

Patient name: 102

Report time: 2025.08.02 16:12:02

Patient No.:

Gender: Male Mobile No.: Print time: 2025.08.05 10:25:47

Age: 18

Sample type: Whole blood

Abbrev.	Result		Reference range	Low	Normal	High
WBC	8.04 10^9/L		3.50-9.50		0	
NEU#	5.96 10^9/L		1.80-6.30			
NST#	1.36 10^9/L	1	0.04-0.50			•
NSG#	4.6 10^9/L		2.00-7.00		0	
NSH#	0.0 10^9/L		0.00-0.30		0	
LYM#	0.98 10^9/L	1	1.10-3.20	•		
MON#	0.99 10^9/L	1	0.10-0.60			
EOS#	0.08 10^9/L		0.02-0.52		0	
BAS#	0.03 10^9/L		0.00-0.06		0	
ALY#	0.0 10^9/L		0.00-0.20		0	
NEU%	74.11 %		40.000-75.000			
NST%	16.96 %	1	0.000-5.000			•
NSG%	57.14 %		50.000-70.000		0	
NSH%	0.0 %		0.00-3.00		0	
LYM%	12.2 %	Ţ	20.000-50.000	•		
MON%	12.3 %	1	3.000-10.000			
EOS%	0.99 %		0.400-8.000		0	
BAS%	0.4 %		0.000-1.000		0	
RBC	5.83 10^12/L	1	4.30-5.80			0
HGB	127.0 g/L	↓	130-175			
НСТ	52.95 %	1	40.000-50.000			0
MCV	90.82 fL		82.00-100.00		0	
MCH	21.81 pg	↓	27.00-34.00	•		
MCHC	240.11 g/L	Ţ	316.00-354.00	•		
RDW_CV	12.51 %		12.000-14.300		0	
RDW_SD	31.0 fL	↓	37.00-50.00	•		
RET#	31.03 10^9/L		24.00-84.00		0	
RET%	0.53 %		0.50-1.50		0	
PLT	105.42 10^9/L		100.00-350.00		0	

Note: The result is reported based on the sample, doctors should make diagnosis according to clinical symptoms.

Overview

Basis: A decrease in lymphocytes (LYM reduction) along with an increase in monocytes (MON# increase) and immature neutrophils (NST# increase) may collectively indicate the following pathological mechanisms.

- **Acute or chronic infection**: An increase in neutrophils suggests infection, particularly bacterial; an increase in monocytes may suggest a chronic process or enhanced inflammatory response. A decrease in lymphocytes may be due to viruses inhibiting B/T cell function, or it could be an early stress response to
- **Immune dysfunction**: A decrease in lymphocytes may be associated with immune s↑ pression, such as from viruses (e.g., EB virus, HIV) or drug effects.
- **Stress response**: As in systemic inflammatory response syndrome (SIRS) or severe infection, which can cause the bone marrow to release immature granulocytes (NST# increase) and s ↑ press the generation or function of lymphocytes.

Overall, this set of abnormal indicators tends to s ↑ port the early or progressive phase of infection (especially bacterial or viral mixed infections) or inflammatory diseases.

LYM# 0.98 ↓ (1.10-3.20)

- Clinical implication: Indicates possible viral infection, immunos ↑ pression, or stress state
- Guideline: Lymphocytopenia is common in viral infections or immunos ↑ pression, such as HIV, EB virus, systemic inflammation, or drug effects.

Assay cell map

MON# 0.99 1 (0.10-0.60)

- Clinical implication: Suggests the possibility of chronic infection, inflammatory response, or certain immune diseases
- Guideline: Elevated monocytes are commonly associated with chronic inflammation, tuberculosis, autoimmune diseases, and some hematological conditions.

Assay cell map

NST# 1.36 1 (0.04-0.50)

- Clinical implication: Suggests possible infection (especially bacterial), stress response, or inflammation
- Guideline: Elevated immature neutrophils (especially metamyelocytes) are an emergency response to infection (particularly bacterial infections) or severe inflammation, reflecting active marrow release of immature granulocytes

Assay cell map

Possible basis diagnosis inference

Bacterial infection (such as pneumonia, urinary tract infection, sepsis) Higher

Increased NST# suggests that the bone marrow releases immature neutrophils in an emergency situation, common in bacterial infections; increased MON# also s ↑ ports chronic or severe infection processes.

Viral Infection (such as Epstein-Barr Virus, Cytomegalovirus, etc.) Medium

LYM reduction may be due to immunos ↑ pression caused by viral infections, some viruses can also trigger monocytosis and inflammatory reactions

Autoimmune diseases (such as systemic I ↑ us erythematosus, rheumatoid arthritis, etc.) Medium

Elevated monocytes are associated with inflammatory conditions; some autoimmune diseases can also manifest as increased immature neutrophils and decreased lymphocytes

- [1] Hussain, Q. M, & Ali, A. (2018). Blood count parameters and theirinterpretation. Journal of Hemato&ogy & Oncology Research, 3(4), 1-7
- [2] Layton, J. B, & Kays, M. B. (2020). The role of complete blood count in the diagnosis of hematological disorders. American Journal of Clinical Pathology, 154(6),877–885.
- [3] Amin, M. M. & Ward, B. (2021), interpretation of complete blood count and its relevance to clinical practice, Patholoey Research and Practice, 215(7), 152798.
- [4] Barker, K. f.,& Barlow, J. A. (2022). Advances in the interpretation of blood tests: Insights from clinical pathologists. Clinical LaboratoryScience, 35(1), 8-15.
- [5] schneider, C,A.. & keim, D...(2020). Key Performance indicators in Hematology: A Comprehensive Review, Hematology Reports, 12(1)25-32.
- [6] Erlanger, B. F, & Smith, M. E. (2016). Hematological parameters and their importance in routine practice. British Journal ofHematology,174(4),637-646.
- [7] Tong, 0.& wu, Y, (2021), clinical implications of complete blood count values: A critical review, international journal of Hematology.113(3),371-382.
- [8] Kumar, s., & Chandramohan, R. (2019). Clinical relevance of blood count analysis. Annals of Hematology, 98(2), 365-376